N S

The Architecture of a Video Image Processor
for the Space Station

S. Yalamanchili, D. Lee, K. Fritze, T. Carpenter, and K. Hoyme
Honeywell Systems and Research Center H gg’
Minneapolis, MN 55418 P

N. Murray
NASA Langley Research Center
Hampton, VA 23665-5225

Abstract o
/

T NS

This-papet.describes the architecture of a video image processor for space station applications/\The architecture was derived from a study
of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options
were selected based on a simulation of the exccution of these algorithms on various architectural organizations. A great deal of emphasis was
placed on the ability. of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture
that is characterized by high level language progr bility, modularity, extensibility and can meet the required performance goals.

i Introduction

A major goal in the design and deployment of the NASA space station is to enable crew members to effectively and efficiently use the resources
of the space station. The number of anticipated scientific and commercial missions will place a heavy demand on these resources, one of which
is crew time. Thus, facilities that enable crew members to perform their tasks efficiently, effectively, and safely are critical to the success of
the space station. This paper describes the utility and feasibility of providing crew members with one such facility - a video image processor (VIP).

Initially, a crew member will directly control and be intérutively involved with moat activities, such as inspection, docking, experiment
monitoring, and control. One of the problems with the mansin-the-loop scenario is that the human operator is frequently performing repetitive
observations and control functions that do not exploit the unique capabilities of a human in space, namely, decision making, supervision, and
creative thinking. Repetitive tasks are ideally suited for au}/omal.ion by machine. Such automation would free crew members for more demanding

tasks as well make more efficient use of their time. An important technology central to automation and robotics is image processing. Video
images may be processed to improve the quality for v:réwing purposes, provide cues in assisting an cperator in some task, or provide some
information Lo control other devices or alert the crew when necessary, as in automatic experiment monitoring.)
El

Early on in the study {1}, a surprisingly large number of applications were found that could benefit from the availability of an en-board VIP.
The required algorithms and architectures necessary jlo support a VIP were found to be mature enough to make the concept of a VIP feasible.
An examination of the functional requirements of iage processing algorithms and the capabilities of current and future processors resulted in
the conceptual design of a hierarchically structured, parallel architecture for a VIP. This paper reports the results of an effort to refine this
conceptual view via simulation. The simulation stﬁdies were based on the requirements derived from an analysis of algorithms for space station
applications. The design and validation of these algorithms are discussed in a companion paper (2].

2 Role of a VIP in the Space Station

The principal goal of a VIP is to increase the qéﬁciency with which the space station resources are used. This would be achieved by automating
vertain tasks with the VIP as well as making some tasks more efficient. Although detailed requirements for various systems on the space station
are still being developed, it is evident that a number of existing requirements support the concept of an on-board VIP. One requirement is that
missions shoiild-be performed in a timely and safe manner. Missions include user experiments, user production activities, satellite setvicing, and
housekeeping tasks. A VIP-may enable a crew member to perform more activities from a central location, such as a workstation. This would
mean fewer extra vehicular activities (EVAs), which in turn makes the crew membér more efficient and, in many instances, considerably safer.
In addition, there are tasks that can be performed by a VIP that would result in faster execution {for example, providing automatic camera
control), make the task easier (filtering of transmitted video containing noise), or eliminate the active participation of a crew member altogether
{automatic experiment monitering).

Anotir requirement relates to space station autonomy. Autonomy rnay be interpreted in two ways. The first interpretation is that an
activity tiiat can proceed autonomously from human interaction. A VIP helps in this case by serforming functions relating to machine vision,
freeing the user from constant interaction. The second is that the space station should operate as autonomous from ground support as feasible.
In this instance, a VIP may be used in several ways. It can compress image data, ailowing the relatively limited on-board storage capability to
be used more efficiently. Thus, requests for data are more likely to be satisfied at the station without accessing ground-based archives. In this
manner, a VIP can increase crew efficiency, making it iess likely that ground-based personnel wouid be required to support the workload.

A related requirement is that the crew time necessary for h keeping tasks should be minimized. As shown in the space station mission
requirements report, one of the constraints on the number of active payloads will be the number of crew hours available to perform payload-
® related tasks. The assumption was made that with a crew of six, the equivalent of one person would be required just to perform housekeeping

)85

Gk %i _INTENTIONALLY BLAME

chores. A VIP could help reduce this time by automating or supporting housekeeping activities, such as rendesvous and docking, space station
inspection, and maintenance. During our examination of potential applications of a VIP (1}, we generated the following set of tasks that could
potentially utilise & VIP for in d safety, autonomy and efficiency.

o Construction
o Satellite servicing

o Rendezvous and Proximity Operations

Docking

e Inspection

¢ Maintenance and Repair
Payload Delivery and Retrieval

e Experiment Monitoring
o Data Management and Communications
o Training

A more detailed discussion of what role a VIP might play in each of these tasks can be found elswhere {i|. Finally a VIP is impacted by a
need to evolve with the space station, primarily since it will not be possible to plan and accommodate all future processing needs. It also has
to be compatible with the size, weight and power budgets that are constrained by the capabilities of the power generation subsystem and the
payload capacity of the space transportation system.

3 VIP Algorithms

There were two goals for the algorithm selaction process. First, the image processing techniques required must be mature and reliable, enabling
a high degree of confid in obtaining the desired functionality. This is particularly important due to the unique set of envi tal, lighting
and imaging constraints under which space imagery is acquired. Secondly, the algorithm suite should benefit & iarge number of applicatioas. A

cross reference between six major classes of image proceasing aigorithms and the eight generic classes of space station applications is shown in
figure 1. ‘

These six families do not represent the entire breadth of the state of the art in image processing, but most of the image processing algorithms
required for the autornation of space station tasks belong to one of these families. In addition, aigorithms in each of these categories are
sufficiently mature for the design and build of a prototype system. This prototype system could be semiautonomous in that it could perform the
majority of the data reduction necessary for a specific task and an operator would be required for verification/confirmation of the actions of the
VIP. Typical applications in which a VIP may perform a task in semiautonomous mode are image enhancement/filtering, intelligent bandwidth
reduction, and object velocity estimation for proximity operations. A more detailed di ion is presented in a companion paper (2|.

4 VIP Architecture

As a result of the VIP.I study, we recommended an architecture for the VIP, shown in Figure 2. It consists of a multiple-SIMD organisation (level
1) followed by a muitiprocessor organization (level 2). The multiprocessor will be designed to allow for the addition of processors specifically
suited for symbalic processing, e.g., rule-based inference processing. The level-1 system may be viewed as a sequence of array processors. The
first processor receives video data from the network interface. Each array processor stage may implement a specific image function, such as
detector compensation, gray scale stretch, or digital filtering. The processed image may then be transferred to an image memory, which forms the
input to another array processor implementing another image function, or may be transferred to the image memory of processors that perform
the next higher level of processing (level 2 and level 3). They consiat of more flexible multiprocessor systems that can be used to compute
descriptions of areas of the image, e.g., regions of interest, boundary codes, statistics, etc. Processing at the higher levels may primarily deal
with arrays of real or integer data (e.g., tracking and position estimation) or symbolic data (e.g., relational descriptions). These two types of
processing are fund tally different, but both are required at this level of processing. Our approach is to efficiently acc date both mod
of processing, loosely coupled through the use of a partitioned global address space. Architectures specifically suited for artificial intelligence
execution are not considered at this time because of the immaturity of the concept. However, as research continues in this area and in artificial
intelligence algorithma for image understanding, the addition of such processors may be allowed during the growth phase of the VI,

The specific choice of a building block for each level must result in an overall organization that satisfies the constraints identified in the
VIP 1 study. One set of constraints is due to the requirements of the Initial Operating Configuration (IUC). Depending upon the technology
freeze date for IOC, current hardware, software, system and algorithm technology may not allow the development of a fully functiona! VIP
within the anticipated size, weight and power constraints. The issue therefore is in phasing: being able to use that part of VIP that is useful
and currently feasible, while provisions are made to allow it to evolve into a fully functional VIP. Certain critical portions {such as the levei-1
architecture) may be included at IOC to perform those functions that are useful for the man-in-the-loop scenario. Then, during the growth of
the space station, additional functionality could be provided using more advanced and stable technology, algorithms, and perhaps architectures.
Phasec .-~ ementation requires features of programmability, modularity, and field expansibility. The latter includes provisions for integrating

86

- special-purpose devices into the architecture as their need becomes evident and their implementation becomes viable. Further, the implementa-
tion technoiogy and architecture must be sufficiently mature to be considered for deployment. The VIP architecture proposed in this program
is amenable to all of these constraints.

4.1 Level 1 Architecture

The VIP | study called for a synchronous parallel architecture that operated in single instruction multiple data stream (SIMD) mode and
delivered in excess of 600 million operations per second (MOPS) performance. Furthermore, each processor would have access to neighboring
processors’ memories and would be microcoded. The rationale for these constraints can be found in the VIP 1 final report |1].

Our choice » the asic building block for the level-1 architecture is the Electro-Optical Signal Processor (EOSP) developed by loneywell
{3]. Its organizat.on « itisfies all of the above mientioned constraints. In addition, it possesses a number of other important features that make
it a good choice for & VIP. The EOSP architecture was derived in a top-down manner from the requirements of real-time image processing
algorithms. The result is a very high speed integrated circuit (VHSIC) chip set that can deliver up to 25 MOPS per processing element {PE) for
low-level image processing tasks, Thirty-two PEs constitute a single stage of the EOSP, resuiting in & computation rate of 800 MOPS per stage.
1t is optimized for image processing functions that are characterized by large volumes of data and repetitive arithmetic and logical operations
aver small neighbarhoods of an image. Unlike many early image processing architectures, issues concerning the interface to different sensors and
the implementation of image input/output (1/0) were also addressed early in the development. Thus, the EOSP is optimized to provide high
throughput for raster scan imaging devices. Any algorithm that exhibits concurrency at the pixel level can be efficiently implemented on the
FosP.

The organization of the EOSP is illusteated in Figure 3. The architecture consists of a linear array of identical PEs, each with its own
memory, controlled by a single common controller. This SIMD architecture minimizes the control overhead per PE, thus achieving extremely
high computational rates within a very compact processor. In its current form, each PE has a 128-byte input buffer and a 128-byte output
buffer. Local memory consists of 512 bytes accessed by a 16-bit arithmetic logic unit (ALU). Each of the 1/0 buffers is externally clocked. Thus,
it is possible for data transfer into the input buffer, data transier out of the output buffer, and processing of local memory contents all to be
occurring simultaneously. This allows for a pipelined mode of operation in which images may be pracessed in real-time with storage requirements
independent of image size. The EOSP architecture operates on an image on a line-by-line basis. Each image line is evenly distributed among the
input buffers of the PEs and transferred to local memory. A sufficient number of consecutive image lines is stored to enabie one line of image
output to be computed. In the configuration of the above example, one line of & K x K window function can be computed by all the processors
in parallel. Each processor computes M pixels of the output line. Next a new input line can be acquired, and one line of the computed image
can be output. In this manner, one line worth of results is computed and output for every input image line from the sensor. This has the effect
of “sliding” a K x K window over the input image. Data from the input buffer are transferred to the individual PE memories in parallel at
the end of the scan line. Processed results in the PE memory, computed during the previous line input, are transferred simuitaneously to the
corresponding output buffers. Buffered results are read out synchronously with the input data entering during the next scan line. Input and
output can be double-buffered for sensors that possess no dead time between lines (e.g., retrace time). This provides a great deal of flexibility in
interfacing the FOSP to different types of sensors and architectures. Such a feature in especially attractive for the VIP since the functionality of
the video network interface (VNI) (input to level-1 architecture) and the details of the level-2 archite:ture (output from the level-1 architecture)
are subject to change. This feature is even more important if the VIP is to be deployed as the level-1 architecture only and is to subsequently
evolve to include the level-2 architecture later in the life of the space station. .

Sizing an EOSP system is done with respect to three features - processing throughput requirements, memory requirements and the 1/O
requirements. Whichever feature is the moat demanding in terms of the number of processors required, dictates the size of the EOSP system.
This essentially accounts for the fact that some applications may be throughput bound versus 1/O bound or memory bound. Several examples
are illustrated in Table 1. All pixei and neighborhood aperations will be implemented in the level 1 architecture. This includes the color image
enhancement algorithms {2]. Functioning brassboard versions of the EOSP PEs are available today. The technology and architecture can be
considered to be mature by any future technology freeze date. Moreover, a great deal of familiarity with the EOSP systems has been obtained,
establishing a degree of confidence in the ability to meet the projected performance goals. Experience has been gained and lessons learned in
the design of the EOSP. Far this and the reasons cited abave, the EOSP architecture is an excellent choice as the building block for the VIP
level-1 architecture.)

4.2 Level 2 Architecture

Our earlier studies indicated that this level would require an 8 - 16 processor system delivering about 100- 200 MOPS with distributed task
allocation. scheduling and synchronization. To understand the characteristics of the level-2 architecture, one needs to understan the algorithms
that will be executed. The granularity of parallelism is relatively large (compared to those executed in the level-1 architecture), resuiting in a
number of concurrently executing tasks. The processing within a task is highly data dependent. As a result, interactions betwees tasks should
be asynchronous. The volume of intertask communication is highly variable and can become the principal determinant of performance ,3-4].
Thus, the first issue is the choice of interconnection topology. Once this has been chosen based on the requirements of the VIP algorithms,
the architecture may be examined in greater detail to address issues of protocols, processor-specific features, and operating system features.
The choices are limited only by une's imagination. However, we chose opologies that, in some sense, occur at extreme points in the spectrum
of performance that interconnection networks can provide. At the same time, the choices were filtered by factors such as maturity, available
experience with them, and how well we understood them. Our choice of families of topologies to investigate were multiple buses, hypercubes,
and braided rings. These topologies are illustrated in figure 4

The next issue is one of analysis techniques. The level-1 architecture exploited fine grain paralielism in a synchronous mode of operation.
Further, the algorithma are largely data independent. With such a fine understanding of the implementation of the computations, it is possible to
analyticaily evaluate the architectural options. That is not the case with the level-2 architecture and algorithms. The high degree of variability

87

in the processing and communication requirements indicate that simulation is an appropriate means to determine the proper topologies. The
Architecture Design and Assessment System (ADAS) tool set developed at Research Triangle Institute was used for this purpose. The tool
set includes facilities for constructing models of communicating paraliel tasks and parallel architectures. Further, tools are available to
communicating sequential tasks onto specific architectures and evaluate the performance of such a hardware/software system. -

4.2.1 Simulation

The objectives for performing the simulation are multifold. First, we would like to verify that the proposed architecture design can meet the
system throughput requirements, and that the specified image processing algorithms can be executed within the given time frame. Second,
we want to compare the performance of several proposed architectures and topologies and analyse how they perform in executing the different
algorithms. This would then provide guidance in selecting the appropriate architecture approach for the VIP design. Pinally, we would like to
use simulation as a tool to refine the architecture design. By varying the system size and characteristics, one can perform tradeoils not only
between inter t topologies, but also in the number of processors and buses, processor speeds, and bus bandwidths. The uitimate objective
is to enable us Lo select and derive a suitable architecture for the VIP design. The parameters we have chosen to study for the VIP simulation
effort are categorized as follows.

o Network topology - Six interconnect network topologies were simulated: muitiple buses with one two and three buses, hypercube, unidi-
rectional and bidirectional braided rings.

e Communication bandwidth - Three separate bus speeds were used in the simulation: 2, 5, and 10 Mbytes, 'sec.

o Processor throughput - Three separate processor throughputs were used in the simulation: 2, 5, and 10 million instructions per second
(MIPS).

@ System size - System sizes of 4, 8 and 16 processors were considered.

In the description of the simulation, buses will be used to refer to both the multiple-access shared medis, such as time shared buses, as well
as point-to-paint links, such as those used in the hypercube and ring organizations. The level 2 impl ts the comp ts of the tracking and
bandwid*h reduction algorithm. Each of the computationally intensive components of this algorithm was studied in greater detail and parallel
versions of these algorithms were derived and modelled with ADAS. These were,

¢ Monochrome Segmentation
o Boundary Tracing
o Linearity Filter

e C ted C ts

o Silhouette Matching

For each of the above algorithms, conservative requirements on image resolution and other algorithm-specific parameters (e.g., size and
number of objects) have been assumed in constructing the software graphs. Both of the above software and hardware systems are modelied in
ADAS with directed graphs consisting of nodes interconnected by directed arcs. Nodes represent individual software operations or hardware
functional elements, while arcs rcpresent data flow between software operations or hardware comp ts. The pr e ot absence of data or
control is represented by tokens on the arcs. When an input condition is satisfied by the presence of specific patterns of tokens on the input
arc a node “fires™. It fires for some period of time after which tokens may be placed on some output arcs probably enabling another node.
Once software and hardware graphs have been developsd, the software graph is mapped onto the hardware graph to produce a constrained
software graph. Since the software graph represents the algorithm executed by the hardware, the order in which the software graph nodes fire
is determined by the structure of the underlying hardware graph. In particuiar, software nodes mapped onto the same hardware nodes can
only be executed one at a time. Nodes represent the execution of a computation (transfer of data). The firing delays are therefore functions
of the volume of computation (data) and the processor speed (link or bus bandwidth). The simulation sequence considers the range of values

for processor speeds (link or bus bandwidths). Some examples of hardware and software graphs are shown in figure 5. The simulation sequence
proceeds as follows,

1. Construct software and hardware graphs. The software graphs represent the image processing algorithms to be executed, while the
hardware graphs represent the architectures and constraints of the hardware system.

2. Place appropriate weights on software nodes. These weights include the various assumed characteristics, such as delays, amount of
procesaing requirements, processor throughputs, and network link bandwidths.

. Constrain the software graph execution by mapping the software graph to the bardware graph. This involves assigning various software
modules (algorithms) to the different hardware modules (nodes).

4. Execute the constrained software graph and collect execution statistics.
5. Modify the weights in step 2 to effect a change in the parameters of interest and repeat the sequence.

For the purpose of evaluating the results, the following performance measures were generated by the simulation.
® Latency - This is the time for one execution of the complete soltware graph (aigorithm).

e Average processor utilisation - This is the average percent of execution time - . processors are busy.

88

o Maximum processor utilisation - This measure is the maximum perceat of execution time that a particular processor is busy. It ideatifies
the presence of bottlenecks.

o Variance of processor utilisation - This provides a measure of balance in proéeuor utilisation and thus, the distribution of the computation
load. ,

o Average bus utilization - This is the average percent of execution time the buses are being used.
« Maximum bus utilization - This identifies the presence of communication bottlenecks.
o Variance of bus utilization - This measure indicates Lhe distribution of the communication load.

To control the ADAS simulation sequence and facilitate the generation of the performance measure statistics, a simulation manager was
developed. The simulation manager is the core of the simulation management facility. It essentially controls tue iterative execution of the
simulation. The details of the simulation management facility can be found in [6].

4.2.2 Simulation Analysis

To facilitate the analysis of the simulation data in selecting a suitable VIP architecture, we decided to evaluate the performance of the various
designs bued on the following performance metrics. :

o Low latency - Latency is the major criteria in evaluating the performance of a design: The systeni throughput must be above some
minimum threshold in order to satisfy the basic timing and processing requirements. Beyond that threshold, low latency may be traded
off against other considerations.

¢ Balanced processor utilization - The preference here is to evenly distribute the processing load among the processors as much as possible,
thereby avoiding the presence of bottlenecks and reducing the severity of single-point failures. This can also serve as an ind.cation of how
growth and fault tolerance can easily be achieved with the design.

o Baianced bus utilisation - The preference here is to avoid communication bottlenecks and severity of single-point failures. Again, this can
serve as an indication of the ease with which fault tolerance and future growth may be accommodated.

o Latency and utilization improvement - This is the differential of the latency or utilisasion as a function of some architectural parameter.
"This measure is used to identify points of diminishing returns. For example, a doubling of processor speed may produce only a 2% decrease
in latency. In that case, the cost of designing a faster processor may not be worth the added speedup. A similar argument can be made
for utilization and, in fact, for most parameters. Another view is that this measure indicates Lhe sensitivity of the latency and utilization
metrics to various architectural parameters. k

In addition to the above performance metrics, we also made the following empirical assumptions concerning the VIP dea.ign requirements.
o The design shall provide a proczssing throughput margin of 100%.

o The design shall provide a communication bandwidth margin of 100%. These first two assumptions allow for growth in algorithmic
requirements and other unexpected overheads.

o The design shall allow the presence of spare processors and spare buses. This enables the design to provide for fault tolerance as well as
growth capabilities.

e The VIP design shall execute the tracking and bandwidth reduction algorithm at the rate of about one image per second. This assumption
is more of a desire than a requirement. In reality, considering the anticipated applications of VIP in the space station, & processing rate
of one image per every few seconds may even be acceptable for most applications.

_With the above initial assumptions and performance metrics in mind, the simulation data were analyzed and evaluated. A software graph
for the tracking and bandwidth reduction algorithm was constructed, and its execution was simulated on the various architectural organizations.
This includes parallelized versions of the selected components. The size of the search space of the architectural alternatives is fairly large. There
are six organizations - three for the bus-based systems, one for the hypercubes, one for the unidirectional rings, and one for the bidirectional
rings. For each organization, there are three system sizes (4, 8, and 16 PEs), three processor speeds (2, 5, and 1G MIPS), and three bus
bandwidths (2, 5, and 10 Mbytes/sec). Thus, there are (6x3x3x3) or 162 distinct possible architectural solutions in this formulation. For each
possible architectural solution, the parameters of interest are measured and tabulated. These results were examined manually to apply the
chosen metrics and select acceptable solutions. The result reveals that a configuration with 16 processors, each with a processing speed of 10
MIPS and a dual-bus network with bus speeds of 5 Mbytes/sec, comes closest to meeting all of the empirical assumptions and performance
metrics‘mentioned above. The simulation performance data for this architecture are summarized in Table 2.

The simulation data also indicate th-t the hypercube configuration (N = 4), with 16 processors at 10 MIPS each and bus speeds of 5
Mbytes/sec, is also a viable alternative. The final latency value for configurations with the hypercube design is shown in Table 3. Currently, the
bus-based approach is preferable to the hypercube approach mainly because it is a relatively more mature and well-understood architecture. In
this respect, the bus-based approach represents a low-risk approach. While the hypercube technology has now become a commercially viable
prod.uct.. improvements are rapid and continuous. The network is inherently fault tolerant through the presence of mutiple paths between nodes,
but it is not immediately obvious how that feature may be efficiently exploited. The area that needs the most attention is operating system
support. Efficient internode communication and global resource ailocation strategies are lacking and are the focus of several research efforts by
both commercial and academic organizations. By comparison. software in general, and operating systems in particular, are much more mature
in bus-based systems. Further, increases in performance by the addition of one, two, or a small number of modules are straightforward in
bus-based systems. Generally, the number of modules is doubled to maintain the connectivity of the hypercube. The addition of a smaller

89

number of procusoﬁ is not straightforward. Thus, while simulation experiments indicate that the hypercube is an acceptable solution, practical
considerations indicate that bus-based simulations are preferable. H , the 18-pr , two-bus system is the choice for a VIP.

4.3 System Issues

System issues can now be addressed in more detail with respect to this apecific organization. System issues relate to three aspects of the VIP.
The fiest is the interaction of the VIP with its environment. This is defined by the functionality of the VNI. The second concerns the software
requirements, and the third, the hardware requirements.

4.3.1 Interaction with Environment

The VIP is intended to support bidirectional transfer of video data to and from devices on the space station. The VIP processes raw video
data from a variety of video sources - including video cameras, video storage devices, and uplink video - and transfers processed, liltered, and
enhanced images to various sinking devices on the space station. In order to specify the functionality of the VNI, it is necessary to make
some assumptions about the operating environment. For example, what is the nature and frequency of traffic to and from the VIP? It is
clearly infeasible to consider all possibilities. Therefare, we focus on what we feel will be the most prevalent scenario for the use of a VIP:
a crew member controlling and using the VIP from a multipurpose applications console (MPAC). For example, cameras possibly mounted
outside the space station may transmit images to the MPAC. These images may be redirected from the MPAC to the VIP for enhancement
for viewing purposes. Alternatively, the VIP could receive images directly from cameras (under MPAC control} and relay results to the MPAC
on detection of a specific event, e.g., in automatic experiment monitoring. In such a scenario, the functionality of the VNI would be deter-
mined by the nature of the interaction with the MPAC and by the operation arnd type of communications media between the MPAC and the VIP.

The MPAC will be one of the primary interactive display devices on the snace station. Images will be dispiayed in the video/graphic/text
application display area of the MPAC, and the console will present a mixture of information types, such as graphic, tabular, textual, video,
discrete, ete. The advanced Work Package 2 impl tation guidelines (7] d trate a preference for the display of color image data. However,
the capability must exist for handling both coler and monochrome video data formats. From the point of view of the interaction with a VIP, it
is assuried that the MPAC will provide for the buffering of processed images since most functions are not processed at the image data rate of
the MPAC, and graphics and image database functions will not be provided by the VIP.

The space station data management system (DMS) can support the requirements for bidirectional communication between the VIP and
MPACs. Data transfers between the VIP and the MPAC involve the tranafer of commands and images from the MPAC to the VIP and status
from the VIP to the MPAC. Commands take the form of enable/disable for the VIP, diagnostic commands, as well as a selection of algorithms.
The volurne of communications for such a transfer is expected to be low, 200 to 300 bytes every i/15th second. Thus, tolerable network latencies
are determined by the interactive nature of the processing. It is the image transfers that place demands on the bandwidth of the DMS. These are

high in volume and place stringent demands on whatever communication network is available. Two options may be considered in determining
how this traffic may best be handled. The first is to use all digital transmission and the space station DMS. The second is to use a separate
analog network and retain the images in analog video form. Both options are viable and possess advantages and disadvantages. However, it
should be roted that the choice of one or the other does not impact the functionality or operation of the VIP, but anly affects the VNI

4.3.2 Hardware Issues for VIP

Several distinct hardware issues arise in the organization of the VIP. These are related to the four principal components of the architecture: the
VNI, the level-1 PEs, the interface between the level-1 and level-2 architectures, and the level-2 PEs. The functionality of the VNI and issues
related to it have been discussed in the previous subsection. The EOSP architecture is an existing system, and most, if not all, hardware issues
relevant to the VIP have been resolved. The aperation of, and interface requiremnents to, an EOSP architecture are defined {3]. lssues related to
the remaining two components are discussed in this subsection.

This interface is physically a bus that can accommodate data transfers at least at the sensor rate. Operation of this bus is embedded in
the functionality of the VNI and the bus interface units of level-2 PEs. This bus, in addition to serving as the physical interface between the
level-1 and level-2 architectures, aiso is the inierface between the EOSP and the VNI for output of image data to the network. This bus is
interfaced to the output buffers of the EOSP PEs. Since these buffers are externally clocked, some degree of freedom is available in designing
the bus to interconnect the EOSP stages, the PEs at the next level, and the VNI This sensor rate bus provides a parallel, multidrop data and
message transfer medium and is a custom bus defined to meet the requirements of the VIP. The data transfer bus is a 16-bit parallel bus and
thus is matched to the word width of the EOSP 1/O data paths. The 16-bit bus alse provides sufficient bandwidth for the anticipated data
transfers. The control bus portion must provide signal lines for interrupts, bus arbitration, and broadcast. Given the block structured nature of
data transfers, muiticycie arbitration schemes with timeouts are probably preferable since the control overhead will be amortized over the size
of the data transfers. In addition, with proper design of the flow of control, it is unlikely that all three components would be simultaneously
requesting the bus. The interrupt facility would also be used to synchronize the transfers between the EOSP and ihe level-2 architecture. Use
of a command facility for the sensor rate bus could eliminate the need for an address bus at the level-1 interface. The majority of data transfers
across the sensor rate bus are block oriented rather than byte or word oriented. The EOSP output data is transferred across the sensor rate bus
on a horizontal scan basis. Data transferred from the EOSP to the VNI is also based on the scan line as the unit of data transfer. A command
code may be active during the beginning of a block transfer or for the duration of a transfer depending on the command type, e.g., beginning
of a scan, EOSP microcode start address, end of scan, etc.

The two principal components of the level 2 architecture are the PEs and the multibus system interconnecting them. The architecture and its
interface to the EOSP are illustrated in Figure 6. Each PE consists of a processor module with local memory, a global memory module, and bus
interface units. The processor (with local memory) interfaces to the sensor rate bus and accesses the two inter-PE buses thrcugh the associated
global memory element. Such an organization has several advantages. From the paint of view of developing a testbed, all of the components

30

and interfaces can be implemented with available standardized commercial components. This could actually continue to be the case, with some
modifications, for a deployed version of the VIP. From a performance viewpoint, interspersing the processor between the global memory element
and the sensor rate bux is crucial. This global memary element can provide performance equivalent to a locally accessible private memory for
the local processor. At the same time, this element is available as globally accessible shared memory via the dual buses, and thus functions as a
true shared memory since the local processor is not in the path for global memory accesses from remote PEs. The price paid for this generality
is that the processor interface unit is in the path for data transfers from the EOSP, and the processor and memory share interfaces to the two
inter-PE buses. Considering the synchronous, predictable, block structured nature of communication between the level-1 architecture and the
PEs, this is not considered a significant disadvantage. Each memoary element consists of fast access, static, rand ies (RAMS).
Single-port accesa to the memory is provided by the local bus interface and the two level-2 global bus interfaces. All three bus interfaces would
contend for port access on an equal priotity basis. -

Each PE consists of a processor, bus interface units, local bus aystems, and a global memozy element, as iilustrated in Figure 6. The processor
conaists of a generic, 32-bit, single-chip computing element, such as the Motorola MC88030. Elements such as this can provide the computing
power necessary to satisfy the throughput requirements determined by the VIP ADAS simulations. A complete set of software development tools,
auch as compilers, assemblers, and debuggers, is also typically available for such elements. The availability of such mature hardware/software
environments is particularly advantageous for the testbed development phase.

The processor bus interface unit controls data transfers between the sensor rate bus, the PE and local memory, and the glabal memory
clement. Data may be transferred directly from the sensor rate bus to the global memory element. Data transfer may also occur between the
local progeam memory and the global memory element. Each hardware node interfaces with a number of bus structures. The firat is the sensor
rate bus interface. The second is the intraprocessdr bus system between the processor, local memory, and the bus ' ‘erface unit. This would
likely be a generic asynchronous bus interface well suited to interconnection between the generic processor and local memory. Finally, there is
the local bus system between the processor unit and global memory element. A standard, 32-bit, asynchronous bus architecture, such as the
VME bus [8], would suffice for this latter bus. An asynchronous bus structure for this local bus simplifies the bus pcrtocol and allows for fast
arbitration and capture of the system bus. This feature lowers PE dead time during a bus arbitration phase for single-word and short block
transfers. Use of block transfers after the bus arbitration phase supports block-level direct memory access between the sensor rate bus and the
global memory element.

A two-bus system architecture has been suggested for the VIP level-2 architecture. Global memory interconnection to the level-2 buses 1
and 2 is depicted in figure 8. There are a number of important gualities that the level-2 bus should possess. ‘From the simulation studies, this
bus system should provide a minimum average data transfer bandwidth of 3 Mbytes/sec. This performance figure is not difficult to achieve with
many standardized bua architectures. A 32-bit data transfer bus width is preferred. This prevents packing and unpacking of 32-bit data that
will be typically required. Further, the bus architecture should be pr ind dent and should allow a fairly large number of modules to

| o

interconnect to the buses. The current system calls for 16 PEs. In addition to the processor hardware nodes, there may be communications
controllers that connect the VIP to the space station DMS via the level-2 bus. '

A standard bus architecture that could meet the requrements for a VIP level-2 bus architecture is the Muitibus 11 9| bus structure. The
Multibus 11 system bus is a high-performance, 32-bit bus capable of supporting up to 20 independent modules. This bus system is synchronous,
supports processor independence, and supports block-level data transfers.

4.3.3 Software Issues

Currently under development is a microcode compiler for the EOSP and Distributed ADA {10}, a candidate for the level 2 architecture.
Capabilities have been successfully demonstrated on restricted problem sets. When finished they will enable the full VIP (level | and 2) to be
programmed in ADA. With respect to operating system issues, we feel that a modification of an existing operating system such as Hunter and
Ready's VRTX system will provide the functionality required of VIP. Schemes for distributed task allocation and scheduling are either handled
within distributed ADA or have been developed [6|. Finally existing schemes are applicable for handling cache coherence and other problems
that may arise. This is primarily due to the embedded nature of the VIP applications.

5 Concluding Remarks

Overall, a VIP will serve as a valuable utility to crew members on the space station, enabling them to efficiently accomplish their mission
objectives and improve use of the space station resources, especially crew time. The architecture of VIP is based on relatively mature technology,
one that will be stable before any future technology freeze date. Many of the systems issues can be resolved with existing hardware and software
technology. The overall effect is one of comparatively low risk with the prospect of increased efficiency in many space station applications.

6 References

1. Honeywell Systems and Research Center, Space Station Video Image Processor Concept Development, Final Report, 1985.

2. P.Symosek et.al., Knowledge-Based Vision for Spie Station Object Motion Detection, Recognition, and Tracking, Proceedings of the NASA
Workshop on Space Telerobotics, Pasadena CA., January 1987. .

3. Honeywell Syatems and Research Center, Electro-Optical Signal Processor User Manual, 1986.

4. B. Lint and T. K. Agerwala, Communcation [ssues in the Design and Analysis of Parallel Algorithms, IEEE Transactions on Software
Engineering, vol. SE-7, March 1981, pp.174-188. ¢

91

e

5. S. H. Bokhari, On the Mapping Problem, IEEE Transactions on Computers, vol. C-30, March 1981, pp. 207-214.
6. Honeywell Systems and Research Center, Video Image Processor Jor the Space Statios, Final Report, November 1988.

7. Space Stalion Work Package 2 - Definition and Preliminary Design Plans, Habitability /Man Systems Report, vol. 13, NAS9 - 17365 DR
- 02, 1986.

8. Signetics, VME Bus Manufacturers Group, VME Bus Specification Manxal, rev. B, August 1982.
9. Intel, Multibus Il Bus Architecture Specification Handbook, 1984.

10, Honeywell Systems and Research Center, Honeywell Distributed ADA Project, Status Report 1985,

Color image Proximity Bandwidth
Enhancement | Tracking | Surveilance identification Operations | Reduction

Construction X X

Salelite Servicing X X

Redezvous and X X X X

Proximity Operations .

Inspection X X

Payload X 1 X X X X X

Dekvery/Retrisval

Experiment Monitoring

Oala Management

and Communications

Training X X X X

Figure 1. Cross reference between applications and algcrithms

Control Bus

A v
N | AP » 1M » AP o 1M j——o 00e N
! i
4 1 ‘ Sensor Rete Bus
. Ly M|]
eese P P
AP - Array Processcr
It - Image Memory y v
P - Processor
N SM | 4—
FP - Flcating Point Processor e Nrt s " sn N @

A - Symbolic Processor

NM - Numeric Masmory Speacse
S - Symbolic Memory Spece » "
VN - Video Network interfacs

)
Numbers represent growth g
points. s e FP FP FP +—0)

Control/Sync Bus

Figure 2. VIP Conceptual Architecture

92

- WS

£ Lmes

l oF mast

oAy utmony wtuony MEMoRY uwony | + 0 ¢
i [
| I |
'3 [11 Yy vy Y
roctrsng mocesun
e) e LNt e
Figure 3. Organization of the EOSP
”" . L] (4]
menv] I KEMORY] . .
Figure 4. Bus oriented, hypercube and braided ring organizations
hisealc
trshdat
mittrsh
bndue
|]

:

Figure 5.

algorithm before parallelizing the components

93

Example ADAS software graph

Figure 5 cont.
corresponding to a parallelized component

ADAS graph of the tracking and bandwidth reduction

